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Highlights  

1. A hyper singular BEM model is set up for wave 

diffraction from thin vertical barriers in channels. 

2. Numerical examinations are carried out on 

extraordinary transmission of waves for channels 

with different channel widths and barrier 

arrangements.  

 

1 Introduction 

It is known that extraordinary transmission (ET) 

of waves can occur at some special frequencies in 

a channel with a group of uniformly arranged 

barriers with gaps. Evans and Porter (2015) 

developed a small gap approximation method and 

examined the total transmission of waves through 

4 pairs of uniformly arranged barriers with narrow 

gaps in a narrow channel. This method is 

applicable when only one propagation mode exists 

in the channel.  

For studying practical cases with different 

arrangements of barriers, a hyper singular BEM is 

developed for thin structures in channels in this 

study, which is applicable for wide channels and 

those with un-uniformly distributed barriers, as 

auxiliary propagation waves are included in the 

BEM model and in the computation of 

transmission and reflection wave energy fluxes. 

With the numerical model, examinations are 

carried out on the influence of wave transmission 

due to channel width, gap width, barrier interval, 

and barrier arrangement. The relationships of 

extraordinary transmission frequencies with those 

parameters are shown. 

2 Formulations 

Consider the wave transmission through a 

channel of width d, in which some vertical barriers 

are arranged at Xj transversely, which have gaps of 

width a between them and a side of the channel, as 

Fig. 1. This is the same with the symmetric 

problem studied by Evans and Porter (2015). 

 

 
Fig. 1 Definition of the problem 

 
For the problem of monochromatic wave 

diffraction from vertical uniform bodies, the time 

factor and the vertical eigen function may be 

separated out. Thus, the velocity potential in a 

water depth h can be written as 
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The horizontal complex potential ( , )x y   

satisfies the Helmholtz equation 
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where k is the wave number, which satisfies the 

dispersion relationship with wave frequency ω. 

We divide the wave potential into the incident 

and diffraction potentials as  

 d( , )= ( , )+ ( , )Ix y x y x y   .  (3) 

The incident wave with an amplitude of A, can be 



written as 
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The diffraction potential is to be determined, and 

satisfies the following conditions: 
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on the body surface SB； 
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on the channel walls y=0 and y=d, and the radiation 

conditions at the upper and the lee sides of the 

channel.    

  At the upper side of the channel, the diffraction 

potential can be written as 
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and at the lee side of the channel the diffraction 

potential can be written as 
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where the eigen values for the transverse 

oscillations are 
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Substitution of the diffraction potentials into 

Helmholtz equation, it yields 
 2 2 2 0j j k    .  (10) 

Correspondingly, the eigen value for the 

longitudinal oscillation is 

 2 2= , 1,2,...j j k j      (11) 

When the channel is wide, or wave number is high, 

wave number k may be larger than some transverse 

eigen values 'j s  . Thus, we accordingly define 

those longitudinal eigen values as 

2 2 , 0,1,...,j j ji k ik j J        

when k is in the range ( / , ( 1) / )J d J d  . At a 

far distance from the barriers, the diffraction 

potentials can be approximated as 
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3 BEM for thin vertical barriers in a Channel 

With applying the Channel Green’s function to 

the Second Green Theorem, the integration 

equation for diffraction waves can be obtained as 

follows (Linton and Evans, 1992): 
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where α is the solid angle of fluid domain and n is 

the normal direction of the body surface directing 

out off the fluid domain.   

For barriers with zero thickness, the above 

integral equation can be written as (Linton and 

McIver, 2001) 
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where ( ) ( ) ( )d d dx x x       is the difference of  

diffraction potentials on the positive and the 

negative sides of the barrier. Allocating the source 

point x0 on the body surface and taking normal 

derivative of the integral equation at the source 

point, it yields 
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with application of body surface condition, where 

HD represents the Hadamard integration. With this 

integral equation, the difference of the diffraction 

potentials on barrier’s two sides can be determined. 

At a large distance from bodies in a channel, 

the channel Green’s function can be approximated 

as (Linton and Evans, 1992)  
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With substitution of the Green’s function into Eq. 

(14), the amplitude of each propagation wave mode 

of reflection and transmission waves can be 

computed by 
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4 Reflection and Transmission Coefficients in 
Channels 

The wave energy flux across a channel section 

may be obtained by the following integration over 

a channel section 
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With substitute of the incident and the diffraction 

potentials into Eq. 18, the wave energy flux across 

a section at the upper side of the channel may be 

separated into the fluxes of incident and diffraction 

waves as 
= I RF F F                  (19) 

where 
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and cg is the wave group velocity. The wave energy 

flux across the lee side of the channel is 
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By the energy conservation law in a described fluid 
domain, the following relation can be obtained as 
 / / 1R I T IF F F F    (23) 

This equation is the same as that derived by 
Srokosz (1980) with using Green theorem. 

The reflection and transmission coefficients can 

be defined by the ratios of the energy fluxes of 

reflection and transmission waves with that of 

incident waves as 

 /R R IK F F   (24) 

and 

 /T T IK F F  . (25) 

 

5 Numerical Examples 

The hyper singular integral equation (Eq. 15) is 

discretized by constant panels, and a BEM model 

is set up. The model is validated by energy 

conservation relation between incident, reflection 

and transmission waves, and Evans & Porter’s 

(2015) small gap approximation results. In follows, 

only the transmission coefficient is plotted for 

brevity. With this numerical model, computations 

are carried out to examine the influence of barrier’s 

number, channel width, gap widths, and barrier 

arrangements on wave transmission in channels. 

Fig. 2 shows the wave transmission coefficients 

for channels with different number of barriers. It 

can be seen that with the increase of barrier’s 

number, the transmission coefficients have more 

peaks at low wave frequencies. The number of ET 

frequencies is one less than the number of barriers, 

and the fundamental ET frequencies is related with 

1( )Nk X X . At higher wave number (kd>2), more 

peaks will occur (as shown in Fig. 3).       

Fig. 3 is the results for channels of different 

widths. 4 barriers are arranged in the channel with 

same interval b and gap width a. It can be seen that 

ET frequency decreases with the increase of 

channel width. At higher frequency more peaks 

appear with the generation of auxiliary propagation 

waves. 

Fig. 4 shows the results for channels with same 

width but different gap sizes. It can be seen that gap 

width also has evident influence on ET frequencies. 

With the increase of gap width, the ET frequencies 

increase, and the high transmission range broadens 

either.  

Fig. 5 shows the results for channels with 

different arrangements of barriers. In all the 

computation, 4 barriers are distributed in the 

channel, with gap width of a/d=0.1. Barrier 

locations for the four computation cases are listed 

in Table 1. It can be seen that the arrangement of 

the barriers has little influence on the fundamental 

ET frequency, as 4 1( )X X  are the same, but has 

evident influence on the second and the third ET 

frequencies. It means that with careful design of 

barrier arrangement the high transmission range 

can be narrowed.  

 



6 Summary  

A hyper singular BEM model is set up for wave 

diffraction from thin vertical barriers in channels. 

With application of the model, numerical 

examinations are carried out on the influence of 

barrier’s number, channel width, gap width, barrier 

interval and barrier arrangement on wave 

transmission. It is found that: 

(a) all of those factors have influence on wave ET 

frequencies,  

(b) at high frequency auxiliary propagation waves 

will induce high transmission either, 

(c) the fundamental ET frequency is dominated by 

the interval between the first and the last barriers, 

but high transmission frequency range can be 

narrowed by barrier arrangement.    
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Table 1 Barrier positions for computation cases  

Cases X1/d X2/d X3/d X4/d 

Case 1 -1.5 -0.5 0.5 1.5 

Case 2 -1.5 -0.75 -0.75 1.5 

Case 3 -1.5 0.0 1.0 1.5 

Case 4 -1.5 0.0 0.8 1.5 

 
Fig. 2 Wave transmission coefficients for a channel with 
different number of barriers 

   

 
Fig. 3 Wave transmission coefficients for channels with 
different widths but the same gap width and barrier interval  

 

 
Fig. 4 Wave transmission coefficients for channels with same 
width and barrier intervals but different gap sizes 

 

 
Fig. 5 Wave transmission coefficients for channels with 
different arrangements of barriers 

 


