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Unsteady response of an ice cover in a channel with vertical walls is studied for large times. The ice
deflection is caused by a load moving along the frozen channel at a constant speed. Viscous damping
of waves generated by the load and propagating along the channel is not taken into account. Viscous
effects are important for the ice deflection. However, viscous damping is not well understood and its
modelling is not well established. Models of ice response without damping are less physical, however,
they may provide helpful estimates of maximum strains and bearing capacity of the ice cover. Such
estimates are known for loads moving on the ice cover of infinite extent. In this paper, estimates of
strains and deflections are obtained for a load moving along a frozen channel with vertical side walls.

Introduction and formulation of the problem

The unsteady hydroelastic waves caused by a load moving along a channel covered with ice are consid-
ered (see Figure below). The channel has a rectangular cross section with finite depth H, —H < z < 0,
and width 2L, —L < y < L. The channel is infinitely long, —oo < x < oo. The channel is filled
with incompressible and inviscid liquid of density p;.
The flow caused by the ice deflection is potential. The
thickness of the ice cover h; and the ice density p; are
constant. The vertical displacement of the ice sheet,
w(z,y,t), satisfies the equation of thin elastic plate with
clamped boundary conditions at y = =+ L. The flow
velocity potential ¢(x,y, z, t) satisfies the Laplace equa-
tion, impermeability conditions at the channel walls and
at the bottom, and the kinematic and dynamic bound-
ary conditions at the ice-liquid interface. The load is
modelled by a localized smooth pressure distribution.

The problems of loads moving along an unbounded ice cover without vertical walls are well studied
(see, for example, an excellent review in Squire et al. (1996)). The problems are usually solved within
the theory of linear hydroelasticity. It is known that the ice deflection is strongly dependent on the
speed of the load. If the load speed is below a certain critical value, the ice deflection is localized near
the load and quickly decays with the distance from the load. For higher speeds of the load, outgoing
waves are formed in the far field if viscous damping in ice is not included in the mathematical model.
At the critical speed, the linear theory without damping predicts unbounded ice response. To obtain
the estimates of the ice response for the critical speed of the load either nonlinear effects (Guyenne et al.
2012) or viscous damping (Hosking et al. 1988) or both are included in the ice model. The presence of
the channel walls complicates the problem. There are an infinite number of critical speeds for a frozen
channel, in contrast to the ice sheet of infinite extent, for which there are two simple critical values of
the load speed. Each critical speed for an ice cover in a channel corresponds to a mode of propagating
along the channel and sloshing across the channel waves studied by Korobkin et al. (2014). For a
speed of the load different from the critical values, the linear theory of hydroelasticity can be used to
estimate the strains in the ice cover. We restrict ourselves to a constant and different from the critical
values speed of the load and the strain/deflection distributions which are stationary in the coordinate
system moving together with the load. These stationary distributions can be obtained directly within




ice models with viscous damping, where ice deflection decays exponentially with distance from the
moving load, see Shishmarev et al. (2016). Decreasing viscous damping, we obtain higher strains in the
ice cover and longer region of significant deflections along the channel. Both deflections and strains are
given by infinite series and integrals. Numerical integration becomes challenging for small damping.
To estimate the strains, we need them for zero damping, where the approach from Shishmarev et al.
(2016) does not work.

Another approach to stationary strain/deflection distributions caused by a load moving along the
channel for zero damping in the ice cover (Schulkes et al. 1988) is employed in the present study. In this
approach, the stationary distributions are approached in time ¢ starting from the initial rest state. At
t = 0 the load, which is modelled by an external pressure acting on the ice plate, is at rest. The initial
ice deflection satisfies the stationary equation of thin elastic plate with proper boundary conditions on
the walls of the channel. The pressure distribution generated by the load is symmetric with respect to
the central line of the channel. Then the load starts to move at a constant speed U along the channel.
The ice deflection decays far ahead and far behind the moving load as |z —Ut| — oo at any finite time
t. The unsteady problem of hydroelasticity is solved with the help of the Fourier transform along the
channel and the normal-mode method (Khabakhpasheva, 2006) for the ice deflection. A second-order
differential equations in time for the principal coordinates of the normal modes are derived and solved
analytically. As a result, the ice deflection is presented by an infinite series of regular Fourier integrals.
The integrals are evaluated for large times by asymptotic methods, see Schulkes et al. (1988). The
asymptotic behaviours of the integrals depend on the speed of the load with respect to the critical
speeds of the propagating-sloshing wave modes. It is shown that for large times the ice deflection
consists of symmetric deflection localized near the load and a system of waves in front and behind
the load. The number of these waves is obtained and the wave amplitudes are evaluated numerically.
Each wave propagates along the channel with the speed of the load U. The waves are stationary in
the coordinate system moving together with the load.

This study is motivated by experiments in ice tanks, operations on ice in rivers and channels such
as cargo transportation or ice breaking to avoid flooding, and ice-structure interaction. The strains
calculated with zero damping are higher than the real ones. For safe transportation on ice, one needs to
compare the computed strains with a strain critical value and determine safe speed of transportation.
Knowing amplitudes of the waves generated by the moving load, we can find places and estimate the
values of the highest strains far ahead and behind the load. It is expected that there are such speeds
of the load that the maximum strains behind and or in front of the load are achieved at the walls of
the channel.

Method of the solution and discussion

The considered initial-boundary value problem is solved with the help of the Fourier transform along
the channel. Then the Fourier image of the ice deflection, w (¢,y,t), is sought in the form

W0 = L an(E U En), w0 = jﬂ [O w(z, y, t)e" € da. (1)

Here 1, (€, y) are the modes of the ice cover oscillations in the channel, and a,(§,t) are the principle
coordinates of the modes. The functions ¢, (k,y) were calculated in Korobkin et al. (2014). They
describe the hydroelastic waves propagating along the channel

w(w,y,t) = Re [A"y (k, y)e et (2)

where wy, (k) is the wave frequency, k > 0 is the wave number and A" is the wave amplitude. By
the method of separating variables we arrive at the following differential equations for the principle

coordinates a,(,t), I
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where P (&, y) is the Fourier transform of the given load distribution, oo = (p;h;/piL) and o, (€, y, 2)
is the flow potential corresponding to the mode 1, (£, y). This equation is solved analytically subject
to the initial conditions.

The ice deflection w(z,y,t) is given by the inverse Fourier transform applied to (1), where
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In the numerical calculations, the series (1) for w’ (¢,y,t) is truncated to Nyoq terms. We introduce
moving coordinate system (X, y, z), X = x — Ut, and find asymptotic behaviour of each integral in (3)
for each mode number n for large times, ¢t — oo and X = O(1). Depending on the load speed U some
integrals in (3) have poles at the points where w,(£) = £U. Note that the integral (3) is regular and
can be written as the sum of five integrals which are understood as Cauchy principal value integrals,
in general. If an integral does not have a pole then it is regular and its contribution is of order O(1/t)
as t — oo. The large-time contributions of non-regular integrals consist of two parts: (a) a part which
is even in X and decaying as | X| — oo, (b) waves (2) with amplitudes A™ propagating behind and in
front of the load. In these waves, k = £, m = 1,2, where £, are solutions of the equation w, (&) = £U,
£ < &%, and the amplitudes A}, are given by
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where ¢y is the group velocity of the n-th mode of hydroelastic wave in the channel. The phase speeds

of these waves is equal to the speed of the load, U. These waves do not propagate with respect to the
load in the moving coordinate system. The long waves with 7 are placed behind the load, and the
short waves with &) are in front of the load.

Calculations were performed for the laboratory ice tank at the Sholem Aleichem Amur State
University. The parameters are: H = 1m, L = 1.5m, h; = 3cm, p; = 1024kg/m3, p; = 920kg/m?>,
Young modulus E = 4.2 - 10°N/m?2. The size of
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\ \ 4 the area of the load distribution on the ice plate

A 3 is 15 cm. The calculated phase speeds ¢"(k) for
g \ A <U<c, n = 1,2,3 are shown in the figure on the left.
" n=g ' ' Different cases are distinguished depending on

the speed of the load. If the speed of the load
is less then the minimum of ¢!(k) then there are
0 2 s 6 8 10 12 14 no waves generated by the load. The ice deflec-

k! tion in this case is symmetric in X and localized
near the load. The minimum of the phase speed of a wave mode corresponds to a critical speed. At
these speeds the phase and group speeds are equal. These resonant cases are not investigated in the
present study. For the speed of the load greater than the minimum of ¢”(k) for n = N > 0 there
are points of intersection between the speed of the load and phase curves for the modes with n < N.
For cl. < U < 2, there are two such points for the first mode, &} and &3, where & < &L, < &3,
(&) = . . The ice deflection along the centre line of the channel is shown in Figure la by the
red dashed line, where the deflection scale, ws. = Py/(p19), and Py is the magnitude of the load. The
black solid line corresponds to the solution of the steady problem with small damping (7 = 0.005 s in
Shishmarev et al. (2016)). 3D ice deflections is shown in Figure 1b. One can see the waves behind
and in front of the load.
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Conclusion. The obtained exact decomposition of the ice deflection to the symmetric, long and
short wave parts for large times makes it possible to estimate the maximum strains under the load, far
behind and in front of the load. Figure 1c shows that the maximum strains are achieved in the waves
in front of the load in this particular case. In general, for supercritical cases (U > cl. ), long waves
propagate behind and short waves propagate in front of the load. Phase speeds and, in particular, the
value ¢! (0) which is finite in contrast to that of other modes, strongly depend on the configuration of
the channel and ice thickness. It is possible that ¢'(0) < ¢2, and then there is the only one short
wave in front of the load for ¢}(0) < U < ¢2;,..
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Figure 1: a) Scaled ice deflection along the centre line of the channel for U = 2 m/s. Red line is for
the asymptotic solution. Black line is for the steady solution with very small damping. b) 3D ice
deflection for U = 2m/s. ¢) 3D maximum strain distribution for U = 2m/s in the given channel. d)
Strains along the centre line of the channel (red line) and at the walls (blue line) for U = 2m/s.



