Numerical Simulation of Breaking Waves Using Adaptive Mesh Approach
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1. Introduction

Strongly nonlinear interaction between wave and floating body is an important problem in many
ocean and offshore engineering applications. However, numerical simulation of such problem is still
very challenging, since the wave turbulence, wave breaking, air entrainment, droplet and bubbles
should be considered together 1.

The CFD solver we are developing is for distributed memory parallel computer system. High
parallelization efficiency of the blocked adaptive mesh (BAMR) solver is the point of our concern.
Main features of the solver are summarized as follows. First, we extend VOF/PLIC 21 and THINC ™!
scheme to adapt to the adaptive mesh frameworks for sharp representation of moving distorted
interfaces. Second, to preserve the flux conservation, a conservative prolongation approach is proposed
for filling the fluxes in newly created cells. Third, we improve the accuracy of calculating curvature
from volume fraction field by using height function method 4 Forth, a fast algorithm for generating
the coefficient matrix of elliptic operator, which is based on adaptive mesh topology, is proposed.
Different from other methods, our algorithm is specially designed for blocked mannered adaptive
meshes, in which the matrix assembling occupies a very small portion of the total running time. In this
paper, some of the recently obtained results by the BAMR solver are presented.

1

Our BAMR framework has been adopted for solving compressible Euler equation ™, compressible

multi-medium flows ' and incompressible flows with IB (immersed boundary) method. Now we are

extending the AMR framework for free surface flows with consideration of the surface tension effect.

2. Mathematical Formulation

In present study the interface is represented by volume fraction field F(0 < F < 1).The
piecewise linear interface calculation (PLIC) method is applied for reconstruction of the interface

inside a cell. F is evolved by
Z+V-F) =0. 1)
Considering the following integral form of the incompressible Navier-Stokes equation,

fr u-ndsS =0, )

a 1 1 1 1
5o wdv + u(u-n)dS—;fF pndS+;fr T ndS+-F +F, 3)

where n is the unit normal vector, I" the control surface, 2 the control volume enclosed by I'. u and
p indicate the velocity vector and pressure, respectively. T = u[Vu + (Vu)T] is the shear stress

tensor. u(F) represents the viscosity and p(F) is the density of the fluid. F; and F; is body force,



while F; is the surface tension force which can be written as
F, = 0Kn “)
where o is the surface tension coefficient and XK is the local curvature of the interface. X is obtained
from height function method ™.
A fractional step method with second order accuracy is adopted for decoupling pressure and
velocity. Solution of Egs. (2-3) is split into three steps.
a. Prediction of intermediate velocity u”’.

a-1: Advection part,

2 [, wav+f, uwt (@t n)ds =0, )
a-2: Non-advection part,
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b. Imposing incompressibility constraint.
1 n. - ",
pfﬂ Vp"-ndS = [ u’-nds, @)
¢. Correction to get final velocity field u™ that satisfy the divergence free conditions.
9 n -1 n
atfﬂ Au™dvV = pfr p"nds, ®)

where Au"is the compensation from pressure gradient. The multi-moment FVM " is adopted for

spatial discretization of Egs. (5-8).

3. Numerical Method

Unlike conventional FVM, which utilizes cell-integrated value only, the multi-moment FVM

>Tina cell, which makes the solver

builds high order spatial approximation by introducing ‘moments
less diffusive, more robust and more compact. In this study the formulation of CIP-CSL2 ™ is used for
discretization of the advection part.
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Fig. 1 3-D adaptive mesh and its representation as an octree.

In block-structured adaptive mesh, the basic unit for manipulation is the blocks as shown in Fig. 2

(a) (c). The computational domain is discretized on a series of block B;, (£ = 0,1, ..., L), where B,



is the coarsest level and the level £ + 1 is finer than the level £ with the factor of 2.To manage the
block topology efficiently, the octree-based hierarchical data structure is used (Fig. 2 (b)). Numerical
solution is advanced only on {B, | VB, € 2.}, which is indicated by the solid circles in Fig. 2 (b).
Different from the overlapped grid topology, physical memory required by the current method is
allocated only in {B; | VB, € £2,}, and no memory space is allocated for the nodes marked with dotted
circle in Fig. 2 (b). The Peano and Hilbert space-filling curves are generated based on the octree for

achieving a dynamically loading balance among the processors s

4. Numerical Results

The two-phase flow solver is validated by two benchmark tests. We use the case of a small-amplitude
capillary wave problem (no gravity) to estimate the accuracy of present surface tension model. Then a free
surface oscillation test is performed to validate the accuracy in prediction of pure gravity driven flows. It can
be expected that due to the viscous effect, the wave oscillation will be attenuated. The computational domain
isx € [-0.54,0.54], y € [-1.54,1.54], here 1 is the wavelength of the perturbation. The initial wave profile
is defined as H(x,t,) = Agcos(kx), here the perturbation amplitude A, = 1/100, the wave number k =
2m/A. The relative maximum interface height varying with time is presented in Fig. 2. Theoretical solution of
the wave amplitude is derived from the theoretical analysis ', which is indicated by the solid red line. The

hollow circles are obtained from present BAMR solver.
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Fig. 2 Evolution of the amplitude of the wave profile as a function of non-dimensional time 7, (a) capillary wave,
La = 3000, p;/pg =1000.0/1.2, m/py =1.0x1073/1.8 % 1075, g =0 (b) gravity wave, pi/pg =10,
pi/pg = 1.0, g = 50. — A. Prosperetti’s theoretical solution " o: results of present BAMR solver.

Finally, a wave breaking problem is investigated numerically by present BAMR solver. To save the
computational load, the periodic boundary condition is specified on the left and right boundary of the
numerical tank, as seen in Fig. 3. The computational domain is x,z € [—0.54,0.54], y € [—0.1254, 0.1254],
where A is the wavelength of the initial free surface. During the simulation, the cells corresponding with the
free surface are always covered by finest blocks, as shown in Fig. 3 (e), each block is filled with 8 X 8 X 8

uniform Cartesian grids. The free surface profiles evolved with time are given in Fig. 3 (a-d).

5. Summary

In this manuscript, we present our new developments on an adaptive mesh refinement solver for

incompressible free surface flows. Several preliminary validation tests show that the present numerical



approach is efficient for simulation of incompressible free surface flows. This is an ongoing

development, more newly obtained numerical results will be presented at the workshop.

Magnitude
VELOCITY

(a) 12
LT
LB e
09 L——1 |
! |
|
r’// ______a—)"')-g'
06 [ | ——TT]
s L
- 03 T
IEHI
|| I
00 o A ] ¥
~
\\\\ =4
‘\\\ |
N I~
220 ]
~

(e

Fig. 3 Wave profiles at different time. (a) t = 0, (b) t = 0.24, (c) t = 0.40, (d) t = 0.52, (e) blocks for AMR and free

surface colored by velocity distribution.
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