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1 Introduction
‘Moonpools’ are vertical openings, through the deck and hull of ships or offshore oil and gas exploration platform,
used for marine and offshore operations such as pipe laying, riser hang off or diver recovery. Being exposed to
incident waves or harmonic ship motions, the fluid inside moonpools may perform significant resonant motions.
The resonance modes consist in sloshing modes and piston mode, where the entrapped water heaves up and
down more or less like a solid. Similar fluid behavior may happen between the hulls of multi-hull vessels or
between ships in a side-by-side arrangement, which can be treated as a two-dimensional moonpool (see Fig.
1). Since the large fluid motions inside moonpools may cause negative impacts, it is important to predict the
resonance frequencies and modal shapes at the concept design phase.

Molin (2001) developed an ingenious method to solve the moonpool problem, based on the assumption that
the water depth is infinite and the beams are very large. A series of formulations have been derived to predict
the resonance frequencies. However, the results by this method may be not accurate for the case in finite water
depth. Based on the domain-decomposition scheme, Faltinsen et al. (2007) carried out theoretical computations
on the piston-like steady-state fluid motions in a two-dimensional symmetric moonpools and compared with the
experimental data from model test. The predicted resonance frequencies agree well with experiments. By using
this method, the fluid domain have to be divided into several subdomains and continuity condition have to be
matched at the common boundaries, which may require extensive computations. Zhang & Bandyk (2013, 2014)
studied the moonpool resonance for two heaving rectangular bodies in a two-layer fluid, using an eigenfunction
matching approach. Based on a higher-order boundary element method, Ning et al. (2015, 2018) developed a
fully nonlinear two-dimensional numerical wave flume to investigate the gap resonance. More recently, Molin
et al. (2018) applied a new model to study three-dimensional moonpool/gap resonance in finite water depth
and the solutions have been improved significantly comparing to the previous model.

In the present study, we developed a model to predict the resonance frequencies for two-dimensional asym-
metric and symmetric moonpools in finite water depth. The objective is to develop an accurate model for
estimation of the natural frequencies for asymmetric and symmetric moonpools, while keep less complicated
computations.

2 Theory and Approach
The natural frequency and modes of a two-dimensional moonpool are studied by applying a theoretical model,
which is illustrated in Fig. 1. The beams of the two bodies are b1 and b2, respectively. The draft of the two
bodies are d1 and d2, respectively. Moonpool, with width being a, is formed between the two bodies. The water
depth is h. The coordinate system is set at the lower left side of the moonpool as illustrated in the sketch.
The fluid domain is divided into three subdomains. The domain decomposition is also illustrated in Fig. 1. At
x = −b1 and x = a + b2, the outer boundaries of subdomain II and subdomain III, boundary condition φ = 0
is applied (φ is the spatial velocity potential). The velocity potential in three subdomains are denoted by φ1,
φ2 and φ3, respectively.

Figure 1: Side-by side offloading (Left). Sketch of the problem and coordinate system (Right).
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The natural modes are eigen solutions of the following boundary value problem

∆φ1 = 0 (1)

∆φ2 = 0 (2)

∆φ3 = 0 (3)

Free surface boundary condition:
∂φ1

∂y
=

ω2

g
φ1 0 ≤ x ≤ a y = d2 (4)

Wall boundary condition:
∂φ1

∂x
= 0 (x = 0) & (x = a) 0 ≤ y ≤ d2 (5)

Body bottom boundary condition:
∂φ2

∂y
= 0 a ≤ x ≤ a+ b2 y = 0 (6)

Wall boundary condition:
∂φ2

∂x
= 0 x = 0 d2 − d1 ≤ y ≤ 0 (7)

Truncated boundary condition: φ2 = 0 x = a+ b2 d2 − d1 ≤ y ≤ 0 (8)

Body bottom boundary condition:
∂φ3

∂y
= 0 − b1 ≤ x ≤ 0 y = d2 − d1 (9)

Seabed boundary condition:
∂φ3

∂y
= 0 − b1 ≤ x ≤ a+ b2 y = d2 − h (10)

Truncated boundary condition: φ3 = 0 (x = −b1) & (x = a+ b2) d2 − h ≤ y ≤ 0 (11)

The velocity potentials for subdomain I, II and III can be written as

φ1 = A0 +B0
y

d2
+

∞∑
n=1

[An cosh(kny) +Bn sinh(kny)] cos(knx) (12)

φ2 =
∞∑

n=1

[Cn cosh(µny) +Dn sinh(µny)] cos(µnx) (13)

φ3 =

∞∑
n=1

En
cosh(λn(y + h− d2))

cosh(λn(h− d1))
sin(λn(x+ b1)) (14)

where kn = nπ/a, µn = π(n− 1/2)/(a+ b2) and λn = nπ/(a+ b1 + b2).
Match φ1 and φ2, we obtain

φ2 = φ1 0 ≤ x ≤ a y = 0 (15)

and

∂φ2

∂y
=


∂φ1

∂y
0 ≤ x ≤ a y = 0 (16)

0 a < x ≤ a+ b2 y = 0 (17)

Match φ2 and φ3, we obtain

φ3 = φ2 0 ≤ x ≤ a+ b2 y = d2 − d1 (18)

and

∂φ3

∂y
=


∂φ1

∂y
0 ≤ x ≤ a+ b2 y = d2 − d1 (19)

0 −b1 < x ≤ a y = d2 − d1 (20)

Combine (4) and (12), we obtain

B0

d2
=

ω2

g
(A0 +B0) (21)

knAn tanh knd2 + knBn =
ω2

g
(An +Bn tanh knd2) (22)

which can be written as the vectorial equation

M1 ·
−→
A +M2 ·

−→
B =

ω2

g
(
−→
A +M3 ·

−→
B ) (23)

with M1,M2,M3 diagonal matrices, which are written as

diagM1 = (0, kn tanh knd2) (24)

diagM2 = (1/d2, kn) (25)

diagM3 = (1, tanh knd2) (26)



Combine (12), (13) and (15), and integrate each side with 1, cos(k1x), cos(k2x) ... , we obtain

A0 =

∞∑
n=1

Cn

aµn
sin(µna) (27)

Am =
∞∑

n=1

Cn

a

[
sin((km − µn)a)

km − µn
− sin((km + µn)a)

km + µn

]
(28)

which can be written as the vectorial equation

−→
A = AC ·

−→
C (29)

Combine (12), (13), (16) and (17), and integrate each side with cos(µ1x), cos(µ2x), cos(µ3x) ... , we obtain

Dm =
2B0

µ2
md2(a+ b2)

+
∞∑

n=1

knBn

µm(a+ b2)

[
sin((µm − kn)a)

µm − kn
− sin((µm + kn)a)

µm + kn

]
(30)

which can be written as the vectorial equation

−→
D = DB ·

−→
B (31)

Combine (13), (14) and (18), and integrate each side with cos(µ1x), cos(µ2x), cos(µ3x) ... , we obtain

Cm +Dm tanh((d2 − d1)µm) =
∞∑

n=1

En

(a+ b2) cosh((d1 − d2)µm)
·[

cos((µm − λn)(a+ b2)− λnb1)− cos(λnb1)

µm − λn
− cos((µm + λn)(a+ b2) + λnb1)

µm + λn

]
(32)

which can be written as the vectorial equation

−→
C +M4 ·

−→
D = CDE ·

−→
E (33)

with M4 diagonal matrices, which are written as

diagM4 = tanh((d2 − d1)µn) (34)

Combine (13), (14), (19) and (20), and integrate each side with sin(λ1(x+ b1)), sin(λ2(x+ b1)), sin(λ3(x+
b1)) ... , we obtain

Em =
∞∑

n=1

µn cosh(µn(d1 − d2))

λm tanh(λm(h− d1))(a+ b1 + b2)
[Cn tanh((d2 − d1)µn)) +Dn] ·[

cos((µn − λm)(a+ b2)− λmb1)− cos(λmb1)

µn − λm
− cos((µn + λm)(a+ b2) + λmb1)− cos(λmb1)

µn + λm

]
(35)

which can be written as the vectorial equation

−→
E = ECD · (M4 ·

−→
C +

−→
D) (36)

By combing (29), (31), (33) and (36), it yields

−→
A = AC · (CDE ·ECD ·M4 − I)−1 · (M4 −CDE ·ECD) ·DB ·

−→
B = AB ·

−→
B (37)

where I is the unit matrix.
Combine (23) and (37), we get

(AB+M3)
−1(M1 ·AB+M2) ·

−→
B =

ω2

g

−→
B (38)

When the series (12) is truncated to some order N , the numerical resolutions of the eigen-value problem
(38) yield the natural frequencies and the associated modal shapes of the free surface. Numerical convergence
has been assessed by repeating the computations for increasing values of N .

We remark that the present model works for asymmetric moonpool formed by two bodies with different
sizes. But the formulation has also been simplified for a symmetric moonpool configuration. A so-called
simplified mode approximation (SMA) of the piston mode has been derived for the symmetric case, and can be
used for rapid estimation of the resonance frequency of piston mode.
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Figure 2: (a)Variation of wave elevation inside moonpool with respect to body draft d2 for b1 = b2 = 0.6 m,
a = 0.06 m, d1 = 5/12b2, h = 1 m. The dashed line: results by Ning et al. (2018). The solid lines: present
results on natural frequency (piston mode); (b) Variation of piston mode frequencies with respect to the draft
of body II.
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Figure 3: Comparison of the piston mode resonance frequencies with the experiments and other solutions.
Variation of natural frequency with respect to the draft d1 = d2. Two cases are computed: (a) b1 = b2 = 2 m,
a = 1 m, h = 5.72222 m; (b) b1 = b2 = 1 m, a = 1 m, h = 2.86111 m.

3 Results and Discussion
The present asymmetric model has been validated by comparing to the numerical results by Ning et al. (2018).
As show in Fig. 2(a), the present prediction of the piston mode resonance frequency agree well with the solutions
by the boundary element code for three different asymmetry moonpool configurations. Fig. 2(b) presents the
effects of draft of body II on the piston mode frequencies.

Two-dimensional symmetric moonpool has also been tested. Both exact solution and single mode approxi-
mation are presented. Fig. 3 illustrate the comparison of the predicted natural frequencies using present model
with experiments and numerical results by the other models. The piston mode frequencies are plotted with
respect to the draft of the body. As can be observed, the present results agree well the experimental results and
semi-analytical results by Faltinsen et al. (2007). In addition, the solutions using present models (both exact
and SMA) have been improved comparing the model by Molin (2001). As also can be seen, the piston mode
resonance frequency decrease as the draft increases. More results and detailed analyses will be presented at the
workshop.
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