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Highlight

A major feature of the classical Neumann-Kelvin (NK) theory of ship waves in calm water is that
it involves an integral around the mean waterline of the ship hull surface. This waterline integral
contains two terms. One of these two terms does not correspond to a consistent linear flow model, and
can then be ignored. An elementary analysis shows that the remaining second term in the waterline
integral in the consistent NK theory largely cancels out the hull-surface integral in both the low-Froude
number limit and the short-wave limit, and therefore may not be ignored. These results likely explain
the difficulties, widely reported in the literature, associated with numerical solutions of the NK
theory, and corroborate the approach used in the Neumann-Michell theory, where the waterline integral
in the consistent NK theory is combined with the hull surface integral via a mathematical transformation.

1. Introduction

The flow around a ship of length L that travels at a constant speed V along a straight path, in
calm water of large depth and horizontal extent, is considered within the usual framework of linear
potential flow theory. This theoretical framework is realistic and useful for most practical purposes as
is well documented; e.g. [1-5]. The Froude number F is defined as F ≡ V/

√
gL where g denotes the

acceleration of gravity.

The flow due to the ship is observed in a system of orthogonal coordinates X ≡ (X,Y, Z) attached
to the moving ship. The undisturbed free surface is chosen as the plane Z = 0 with the Z axis directed
upward, and the X axis is taken along the ship path and directed toward the ship bow. The flow thus
appears steady with flow velocity given by the sum of the apparent uniform current (−V, 0, 0) that
opposes the ship speed V and the (disturbance) flow velocity given by the gradient (ΦX ,ΦY ,ΦZ) of the
flow potential Φ(X). The length L and the speed V of the ship are used to define the nondimensional
coordinates x ≡ X/L, flow potential φ ≡ Φ/(VL) and flow velocity (φx, φy, φz) ≡ (ΦX ,ΦY ,ΦZ)/V .

The mean wetted hull surface of the ship is denoted Σ. This surface intersects the undisturbed free-
surface plane z = 0 along the mean waterline Γ. The unit vector n ≡ (nx, ny, nz) is normal to the
hull surface Σ and points into the water (outside the ship). Within the linear potential flow analysis
considered here, the flow around Σ is expressed in terms of a Green function G(x, ξ) that satisfies the
radiation condition and the Kelvin-Michell linearized boundary condition at the free surface z = 0, and
represents the (nondimensional) velocity potential of the flow created at a flow-field point x ≡ (x, y, z)
by a unit source located at a source point ξ ≡ (ξ, η, ζ).

2. Classical (Brard-Guevel) and consistent Neumann-Kelvin theories

The Neumann-Kelvin theory proposed by Brard [6] and Guevel [7] expresses the flow potential
φ ≡ φ(x) at a flow field point x via the boundary integral representation

φ = φH+ ψBG where φH ≡
∫

Σ

Gnxda (1a)

and ψBG ≡F 2

∫
Γ

(φGξ −Gφξ)nx√
(nx)2 + (ny)2

d`−
∫

Σ

φ n ·∇Gda (1b)

Here, da and d` denote the differential elements of area or length at a point ξ of the hull surface
Σ or the mean waterline Γ. The components φH and ψBG in (1) correspond to the classical Hogner
approximation given in [8] and the Brard-Guevel correction of φH .

An important feature of the classical NK flow representation (1) is that the Brard-Guevel potential
ψBG contains an integral around the mean waterline Γ of the ship hull. The term Gφξ in the waterline
integral (1b) is shown in [1] to correspond to an inconsistent linear flow model, and may then be ignored
in a consistent linear flow model. The resulting consistent NK theory is associated with the modified



NK boundary integral flow representation

φ = φH+ ψ where ψ ≡F 2

∫
Γ

φGξn
xd`√

(nx)2 + (ny)2
−
∫

Σ

φ(Gξn
x+Gηn

y+Gζn
z)da (2)

and φH is given by (1a). The consistent NK flow representation (2) is now considered.

3. Wave potential in the consistent Neumann-Kelvin theory

The Green function G can be formally expressed as G = L + W where L denotes a non-oscillatory
local flow component, which can readily be evaluated via the simple global analytical approximation
given in [9,10], and W represents the waves contained in G. Similarly, the flow potential φ ≡ φ(x) at a
flow-field point x can be expressed as

φ = φL+ φW ≈ φHL + φHW + ψW (3)

where φHL and φHW denote the local flow and wave components of the Hogner potential φH , and the local
flow component ψL is ignored here, as in [1], because this component is negligible for typical nonlifting
displacement ships. The wave potential φW is considered hereinafter.

This wave potential can be expressed as

φW ≡ φHW + ψW ≡ φHW + ψxW − ψ
yz
W (4a)

The Hogner component φHW is defined by (1a) where G is taken as W, and the components ψxW and ψyzW
associated with the potential ψ given by (2) are defined as

ψxW ≡ F 2

∫
Γ

φWξn
xd`√

(nx)2 + (ny)2
−
∫

Σ

φWξn
xda and ψyzW ≡

∫
Σ

φ(Wηn
y+Wζn

z)da (4b)

The wave potential ψxW combines the contributions of the waterline integral and part of the hull-surface
integral in the consistent NK flow representation (2).

The wave component W in the Green function G is given in e.g. [1,9-11] as

W =
H

πF 2
Im

∫ q∞

−q∞
ΛEE dq (5a)

where H ≡ H(ξ−x) is the Heaviside unit-step function, Im means that the imaginary part is considered,
and F is the Froude number. Moreover, the finite limits of integration ±q∞ and the function Λ filter
unrealistic short waves, and E and E are the elementary wave functions

E ≡ e (1+q2)z/F 2+ i q∗(x+q y)/F 2

and E ≡ e(1+q2)ζ/F 2− i q∗(ξ+q η)/F 2

where q∗ ≡
√

1+ q2 (5b)

The wave potential φW defined by (4) is then given by the Fourier-Kochin representation

φW =
1

πF 2
Im

∫ q∞

−q∞
ΛAEdq (6)

where the wave-amplitude function A ≡ A(q;x) can be expressed as

A = AH+ i(Ayz−Ax)q∗/F
2 where q∗ ≡

√
1+ q2 (7a)

Here, the components AH, Ayz and Ax are defined as

AH ≡
∫

Σ

HnxE da , Ayz ≡
∫

Σ

Hφ(qny + iq∗n
z )E da (7b)

and Ax ≡ F 2

∫
Γ

HφnxE d`√
(nx)2 + (ny)2

−
∫

Σ

HφnxE da (7c)

The amplitude function AH and the functions Ayz and Ax in (7) correspond to the Hogner wave
potential φHW and the NK wave potentials φyzW and φxW in (4). The amplitude function Ax is related to
the waterline integral and part of the hull-surface integral in the consistent NK flow representation (2).



4. Waterline integral in the consistent Neumann-Kelvin theory

The importance of the integral around the waterline Γ in (7c) can readily be estimated for a ship
hull surface Σ with a constant draft d ≡ D/L and rectangular framelines, for which one has

Ax =

∫
Σ

H(AΓφΓ− φ)nxE da where 1 ≤ AΓ ≡ (1+ q2)/(1− e−(1+q2 )d/F 2

) ≤ 1+ q2 (8)

and φΓ denotes the value of the potential φ at the waterline Γ.

In the low Froude number limit 1� d/F 2 or the short-wave limit 1� q, (8) yields AΓ≈ 1+ q2 and

Ax ≈ q2

∫
Σ

HφnxE da (9)

Thus, in the limit 1 � q, the waterline integral dominates the hull-surface integral in (7c). Moreover,
expression (7b) for Ayz, the identities (nx, ny, nz) = (−ty, tx, 0) and the approximation (9) yield

Ayz−Ax≈ q
∫

Σ

Hφ(tx+ q ty)E da ≈ F 2q

1+ q2

∫
Γ

HφΓ(tx+ q ty)e− i q∗(ξ+q η)/F 2

d` (10)

The dominant contribution to the waterline integral (10) stems from the points of stationary phase of
the trigonometric function, i.e. from the points where dξ/d`+qdη/d` ≡ tx+q ty vanishes. The dominant
contributions to the functions Ayz and Ax therefore cancel out in the limit 1� (1+ q2)d/F 2.

The foregoing elementary analysis shows that the waterline integrals in (4b) and (2) may not be
ignored. This analysis also corroborates the approach used in [1] where the integrals around the waterline
Γ and over the hull surface Σ in (4b) are combined and expressed as a hull-surface integral via a
mathematical transformation. Specifically, this transformation is based on Stokes’ theorem and a vector
wave function W ≡ (0 ,W x

z ,−W x
y ) associated with the scalar wave function W in the Green function

G ≡W + L via the relation ∇×W = ∇W .

5. Neumann-Michell theory

Specifically, the wave amplitude function A in (6) is expressed as the hull-surface integral

A =

∫
Σ

H [nx+ (qνy+ i q∗ν
z )φt + nx(qνz− i q∗ν

y )φd ]E da (11)

in the Neumann-Michell (NM) theory given in [1]. Here, φd and φt denote the derivatives of the potential
φ along two unit vectors d and t that are tangent to the ship hull surface Σ and defined as

d ≡ (0,−νz, νy) and t ≡ [
√

(ny)2 + (nz)2,−nxνy,−nxνz ] where (νy, νz) ≡ (ny, nz)/
√

(ny)2 + (nz)2

Expressions (7b) and (9) show that the integrands of the hull-surface integrals Ayz
√

1+ q2 and

Ax
√

1+ q2 in the representation (7a) of ship waves within the consistent NK theory are O(q2) or O(q3)
in the short-wave limit 1� q, whereas the integrand of the NM correction to the Hogner approximation
in the hull-surface integral (11) is O(q) in the limit 1� q. Major difficulties, reported in the literature,
related to numerical solutions of the NK theory are then reduced within the NM theory. The NM
representation (11) expresses the wave amplitude function A in (6) in terms of the (given) normal flow
velocity φn ≡ nx, which is related to the Hogner potential φH in (2), and the tangential flow velocities
φd and φt instead of the flow potential φ in the NK representation (2).

6. Validation, applications, extensions of the Neumann-Michell theory

Thus, the NM theory is a modification of the classical NK theory that, unlike the NK theory, does not
involve a line integral around the mean ship waterline and corresponds to a consistent linear potential
flow model. Validation studies of the NM theory are reported in [2-5] and several other studies, listed
in [5]. An important feature of the theory is that it is a very practical. Specifically, the flow around
a ship hull can be evaluated in about 1sec, using a common PC, in the NM theory. Moreover, the
theory yields realistic flow predictions that are sufficiently accurate for most practical purposes, notably
for early design and optimization, and compare favorably with far more complicated CFD methods;



[4,5]. The NM theory is then well suited for routine practical applications to ship design and hull-form
optimization, and indeed has been widely used for optimization in numerous studies, listed in [5].

Three computer codes that solve the NK integro-differential equation to determine the flow potential
φ at a ship hull surface Σ, and a fourth code that directly determines the tangential flow velocities φd
and φt at Σ by solving a pair of coupled integral equations (readily obtained from the NK integro-
differential equation for φ), exist so far. The surface Σ is discretized via flat triangles, and the iterative
solution procedure given in [1,2] is used, in three of these four existing codes; The fourth code is based
on a direct solution procedure and a NURB representation of Σ. The predictions given by these four
numerical implementations of the NM theory are consistent, and compare favorably with the predictions
given by panel methods that solve the Laplace equation (with linear or nonlinear free-surface boundary
conditions) via distributions of Rankine sources on Σ and the free surface, as well as other alternative
numerical methods that solve the Euler, RANS or URANS flow equations.

6. Concluding remarks about linearization

As is shown in [1], the narrow band of water bounded by the undisturbed free-surface plane z = 0
and the linear approximation z = F 2φx to the actual free surface yields a linear contribution to the
hull-surface integral associated with the boundary condition at the ship hull surface, and this linear
‘hull-boundary-condition’ contribution must therefore be retained within the framework of a consistent
linearization. Moreover, [1] shows that this linear contribution, ignored in the classical Brard-Guevel
NK theory, precisely cancels out the term Gφξ in the waterline integral (1b). Thus, the common practice
of enforcing the body-surface boundary condition up to the undisturbed free-surface plane z = 0 should
not be automatically followed to formulate linear boundary-value problems for free-surface flows around
ships and offshore floating structures.

It may be interesting to consider the formulation of consistent linear boundary-value problems for
various free-surface flows around floating bodies. In particular, for the usual radiation and diffraction
problems of a rigid floating structure (without mean forward speed) associated with time-harmonic
motions of small amplitude ε, the contribution of the narrow band of water between the undisturbed
free-surface plane z = 0 and the linear approximation to the actual free surface to the hull-surface integral
associated with the boundary condition at the body surface is O(ε2), i.e. is nonlinear. Evidently, this
nonlinear contribution should be ignored in a consistent linear theory, as is indeed done in the classical
linear theory of the radiation of water waves by floating structures.
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