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Head-on collision between two hydroelastic solitary waves
under a thin ice sheet floating on shallow water
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Head-on collision between two hydroelastic solitary waves propagating at the surface of an incom-
pressible and ideal fluid covered by a thin ice sheet is analytically studied by means of a singular
perturbation method. The ice-sheet is modelled with the help of the special Cosserat theory of hy-
perelastic shells and the Kirchhoffs–Love plate theory, which yields the nonlinear and conservative
expression for the bending forces. The shallow water assumption is taken. The resulting governing
equations are solved asymptotically with the aid of the Poincaré–Lighthill–Kuo (PLK) method, and
the solutions up to the third order are presented.
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1. INTRODUCTION

The collision of waves is also one of the ma-
jor topics in marine engineering and oceanogra-
phy. When the waves strike the sea coast colli-
sion occurs which creates a healthy influence on
the hydrodynamics attitude of ship wakes and also
on the structural attitude of the offshore struc-
ture. Scott Russell described, in 1834, the solitary
waves experimentally then Korteweg and de Vries
(KdV) formulated in 1895 the solitary wave math-
ematically in terms of the so-called KdV equation.
Gardner et al. [1] described the engrossing behav-
ior of collision between solitary gravity waves by
means of the inverse scattering transform (IST)
method, and found that during the collision pro-
cess, the solitary waves exchange their positions
and energies with each other and regain their orig-
inal forms after separation.

The purpose of this paper is to examine the
head-on collision between nonlinear hydroelastic
solitary waves traveling in fluid covered by a thin
ice sheet. The new model recently developed by
Plotnikov and Toland [2] will be used for the ice
sheet. For a general case, the surface tension of the
fluid is also included, which is a totally new model,
to the authors’ best knowledge, for the fluid–ice
interaction. We consider that both the solitary
waves are small in amplitude (a/H ≪ 1) having
long wavelength (λ/H ≫ 1), where a, H and λ
are the wave amplitude, the water depth and the
wave length, respectively. The physical parameters
and amplitude of wavelength are related to Ursell’s
ordinary theory of shallow water i.e H3 ≈ aλ2.
The asymptotic solutions of the governing nonlin-
ear equation have been obtained with the help of
a singular perturbation technique named after the
Poincaré–Lighthill–Kuo (PLK) method.

∗Corresponding author. Email: dqlu@shu.edu.cn.
This research was sponsored by the National Natural Sci-
ence Foundation of China under Grant No. 11472166.

2. MATHEMATICAL FORMULATION

We consider hydroelastic waves in a channel of
finite depth in a Cartesian coordinate system. The
horizontal plane bottom is located at z = 0 where
the normal velocity is zero since no fluid parti-
cles penetrate the bottom. The deflection of the
ice plate (namely the hydroelastic wave profile) is
presented at z = H(x, t) where t is the time. The
velocity field for the governing flow is described by
a potential function ϕ(x, z, t) with ∇2ϕ = 0 for
0 < z < H and ∂ϕ/∂z = 0 at z = 0.

The kinematic boundary condition for the gov-
erning flow at the fluid–ice interface (z = H(x, t))
can be written as

∂H

∂t
+∇ϕ · ∇H =

∂ϕ

∂z
. (1)

The dynamic boundary condition for the floating
ice sheet at the free surface is described as

∂ϕ

∂t
+

1

2
|∇ϕ|2 + gH +

Pe

ρ
= B, (2)

where g is the gravitational acceleration, ρ the den-
sity of the fluid, Pe the pressure at the fluid–ice in-
terface, and B(t) Bernoulli’s constant which, with-
out loss of generality, will be set as B = 0 here-
inafter. For Plotnikov and Toland’s model [2], Pe

takes the form of

Pe = −Tκ+D

(
∂2κ

∂s2
+

1

2
κ3

)
, (3)

where T is the coefficient of surface tension of the
fluid, D = Ed3/[12(1 − ν2)] with Young’s modu-
lus E, the thickness d and Poisson’s ratio ν of the
plate, respectively; κ the curvature of the fluid–
ice interface, and s the arc length of this interface.
The curvature κ in terms of H(x, t) can be written
as

κ =
∂2H

∂x2

[
1 +

(
∂H

∂x

)2
]−3/2

. (4)



According to Guyenne and Părău [3], we have

∂κ

∂s
=

[
1 +

(
∂H

∂x

)2
]−1/2

∂κ

∂x
. (5)

Equation (3) includes the combined effects of the
surface tension of the fluid and the elasticity of the
ice sheet. The second term in Eq. (3) represents
Plotnikov and Toland’s model, of which the linear
part is the well-known linear Euler–Bernoulli beam
or Kirchoff–Love plate model.

For long waves in shallow water, the potential
function ϕ(x, z, t) can be presented as the Taylor
series at z = 0. With the help of ∇2ϕ = 0 for
0 < z < H and ∂ϕ/∂z = 0 at z = 0, we get

ϕ(x, z, t) =
∞∑

n=0

(−1)n
z2n

(2n)!
∇2nΦ, (6)

where Φ(x, t) = ϕ(x, 0, t). Rewriting Eqs. (1) and
(2) in terms of Φ, we get

∂H

∂t
+

∂

∂x

[
HU +

∞∑
n=1

H2n+1

(2n+ 1)!

∂2nU

∂x2n

]
= 0, (7)

∂U

∂t
+

∂

∂x

[
gH +

U2

2
+

Pe

ρ

+
∞∑

n=1

(−1)n
H2n

(2n)!

(
∂2nU

∂t∂x2n−1

+
1

2

2n∑
m=0

(−1)mC2n
m

∂nU

∂xn

∂2n−mU

∂x2n−m

)]
= 0. (8)

where U = Φx is the tangential velocity at the
bottom of the channel and C2n

m is a binomial coef-
ficients.

3. METHOD OF SOLUTION

The solution of Eqs. (7) and (8) will be found
with the help of a singular perturbation method.
For this purpose, in the wave frame of reference we
introduce the following coordinate transformations

ξ0 = ε
1
2 k(x− C+t), η0 = ε

1
2 k̄(x+ C−t), (9)

where k and k̄ are the wave numbers of order unity
for the right- and left-going wave, respectively, ε
with 0 < ε ≪ 1 is a dimensionless parameter which
represents the wave amplitude and order of magni-
tude. In accordance with Ursell’s relationship the
scaling of the horizontal wavelength is considered
as ε

1
2 . C+ and C− are the right- and left-going

wave celerities, respectvively. Using the method
of strained coordinates, we introduce the following
transformations

ξ = ξ0 + εkθ(ξ, η), η = η0 + εk̄φ(ξ, η), (10)

where ξ and η represent the right- and left-going
phase variables; θ(ξ, η) and φ(ξ, η) are the phase
functions to be deduced in the perturbation anal-
ysis of Eqs. (7) and (8).

Let H = H0(1 + ζ), while ζ is the nondimen-
sional elevation of the fluid–ice interface and H0 is
the undisturbed depth of the fluid. Let C =

√
gH0

be the phase speed of linear waves in shallow wa-
ter of constant depth. Let us make the following
changes in the dependent variables

U + Cζ = 2εCα, U − Cζ = −2εCβ. (11)

Introducing the new variables in the form of fol-
lowing power series:

α(ξ, η) = α0 + εα1 + ε2α2 + . . . , (12)

β(ξ, η) = β0 + εβ1 + ε2β2 + . . . , (13)

θ(ξ, η) = θ0(η) + εθ1(ξ, η) + ε2θ2(ξ, η) + . . . , (14)

φ(ξ, η) = φ0(ξ) + εφ1(ξ, η) + ε2φ2(ξ, η) + . . . ,
(15)

C+ = C
(
1 + εaR1 + ε2a2R2 + . . .

)
, (16)

C− = C
(
1 + εbL1 + ε2b2L2 + . . .

)
, (17)

where R1, R2, R3, . . . and L1, L2, L3 . . . are the
coefficients for removing secular terms in the per-
turbation solution.

4. PERTURBATION ANALYSIS

Substituting Eqs. (12) to (17) into Eqs. (7) and
(8), we get the following system of equations. The
coefficients of ε, ε2, ε3, . . . are presented in se-
quence as follows.

4.1. Coefficients of ε

The first order solution reads as

α0 = aA(ξ), β0 = bB(η), (18)

where A(ξ) and B(η) are arbitrary functions to be
determined, a and b the amplitude factors which
permit us to take A(0) = B(0) = 1.

4.2. coefficients of ε2

For the leading order, we categorized this sec-
tion into three parts, namely secular terms, non-
local and local terms, which will be analyzed in
details as follows.

4.2.1. Secular terms. In the second order,
those terms which are independent of η are the
secular terms. After integrating these terms with
respect η we get the secular attitude. These terms
become unbounded with respect to time or space.
After setting these terms equal to zero, we obtain

(−2R1 + 3A)aA′ + k2H2
0

(
1

3
− τ

)
A′′′ = 0, (19)



where τ = T/(ρgH2
0 ) is a nondimensional param-

eter representing the effect of the surface tension
of fluid. Let R1 = 1

2 , kH0 =
√
3a. After some

simplification, Eq. (19) can be written as

γA′′′ + 3AA′ −A′ = 0, (20)

where γ = 1− 3τ . The solution of the above equa-
tion can be written as

A(ξ) = sech2
(

ξ

2
√
γ

)
. (21)

Similarly, we can also obtain β using the similar
procedure. As τ tends to zero (γ → 1), Eq. (21)
reduces to those obtained by Su and Mirie [4] for
pure gravity waves.

4.2.2. Non-local terms. These terms do not
represent any secularity. So we will leave them as
they are. Due to them, the resulting equation for
α1 comes under an integral. we obtain the equa-
tion for θ0 and φ0 as

θ0(η) =
b

4k̄

∫ η

−∞
B(η1)dη1, (22)

φ0(ξ) =
a

4k

∫ ξ

+∞
A(ξ1)dξ1. (23)

4.2.3. Local terms. The solution for α1 read
as

α1(ξ, η) =
1

4
abAB − c0b

2B +

(
3

2
c0 +

1

8

)
b2B2

+ a2A1(ξ), (24)

where c0 can be found using calculations. Similarly
Similarly, we can also obtain β1 using the simi-
lar procedure. In Eq. (24), A1(ξ) is an arbitrary
functions will be determined in the next order of
approximation.

4.3 coefficients of ε3

Let Γ = D/(ρgH4
0 ) is a nondimensional param-

eter representing the effect of the flexural rigidity
of the elastic plate. The terms occurring in third
order can further be summarized into three parts
as follows.

4.3.1. Secular terms. The equation for the
secular terms appearing in this order are

γA′′
1 + (3A− 1)A1 = (2R2 + c1)A+ c2A

2

+ c3A
3, (25)

where c1, c1 and c3 can be obtained using calcula-
tions.

The first term on the right-hand side of Eq. (25)
becomes unbounded when ξ → ±∞, which shows
that the series solution is not asymptotic. Thus,
the coefficient of this term must vanish i.e.

R2 =
c1
2
. (26)

In Eq. (25), we found that the solution for the
wave celerity upto the second order are correct.
The analytical solution for the rest of the terms
can explicitly be written as

A1(ξ) =

(
2

3
c2 + c3

)
A− c3

2
A2. (27)

This completes the solution for Eq. (24). The
homogeneous solution of Eq. (25) is A′, but we will
drop this term here because we found that when
move to a higher order then the homogeneous term
only causes a uniform shift of the origin of ξ which
describes a simple phase shift as mentioned in the
preceding section.

4.3.2. Non-local terms. The non-Local
terms will provide the solution for θ1 and φ1 as

θ1(ξ, η) =
b

16k̄

∫ η

−∞
θ1,0Bdη1

+
ab

16k̄

∫ η

−∞
θ1,1ABdη1, (28)

where θ1,0, θ1,1 can be found using calculations.
Similarly, we can also obtain φ1 using the similar
procedure.

4.3.3. Local terms The solution for the local
terms can be written as

α2 = (c4b
2 + c5a

2)bB3 + [(c6bB + c7aA)a+ c8ab

+ c9a
2]bAB + (c10b

2 + c11ab− c5a
2)bB2

+ (c12b
2 + c13a

2)bB + a3A2(ξ), (29)

where A2(ξ) is arbitrary functions which can eas-
ily be found in the next order approximation using
the same procedure as mentioned above. The con-
stants cn (n = 4, 5, · · · 13) appearing in the above
equations can be found using calculations. Simi-
larly, we can also obtain β2 using the similar pro-
cedure.

For our analysis convenience, further calculation
stops at the order of O(ε3).

5. SOLUTION OF THE PROBLEM

The major results are obtained in preceding sec-
tion are deduced as follows.

The surface elevation at the water–plate inter-
face can be obtained from Eq. (11). Thus we have

ζ = ε(α+ β). (30)

The distortion profile can be obtained. After set-
ting B(η) = 0, we get

ζ = εaA+ ε2a2
[
1

2

(
c0 +

1

4

)
A+A1(ξ)

]
+O(ε3), (31)
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Fig. 1. (a) Head-on collision between two solitary
waves. Solid line: Γ = 0; Dash line: Γ = 0.007. (b)
Distortion profile. Solid line: Before collision; Dashed
line: After collision.
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Fig. 2. Maximum run-up vs wave amplitude. Solid
line: Γ = 0; Dashed line: Γ = 0.007; Dash-dot line:
Γ = 0.03.

The maximum run-up ζmax during the collision
process can be obtained by taking A = B = 1

in Eq. (31), we get ζmax = ζ
∣∣∣
A=B=1

.

The velocity at the bottom U can be obtained
from Eq. (11), we get

U/C = ε(α− β). (32)

Following from Eqs. (16) and (17), the asymp-
totic solutions for the wave speeds read

C+/C = 1 +
1

2
εa− c1

2
ε2a2 +O(ε3), (33)

C−/C = 1 +
1

2
εb− c1

2
ε2b2 +O(ε3). (34)

The phase shifts during the collision process
reads

θ = θ0 + εθ1 +O(ε2), (35)

φ = φ0 + εφ1 +O(ε2), (36)

where θ0, θ1, φ0, and φ1 are given in preceding
section.

6. DISCUSSION

We describe the graphical results for all the
pertinent parameters involved in this hydroelas-
tic wave problem. For this purpose, Figs. 1 and
2 have been sketched against the important pa-
rameters. We take the physical parameters i.e.
E = 104 Nm−2, d = 0.007m, g = 9.8m s−2,
ρ = 1000 kgm−3, H0 = 1m, and T = 0.075Nm−1

for the graphical results.
Figure 1(a) is plotted for multiple values of Γ. In

this figure we observe that the significant enhance-
ment in the flexural rigidity parameter Γ, provid-
ing a significant resistance. An increasing Γ tends
to diminish the interfacial surface elevation. Physi-
cally, when Young’s modulus E rises, the deflection
of a plate becomes stiffer and a very high rate of
reactive force occurs to oppose the deformation of
an elastic plate. Figure 1(b) represents the distor-
tion in the wave profile which is plotted with the
help of Eq. (31). Before collision when θ = 0, the
wave profile is symmetric, however after collision
process θ ̸= 0, the wave profile is not symmetric
and tilts backward in the direction of propagation.
It depicts in Fig. 2 that Γ tends to diminish the
maximum run-up as the wave amplitude rises.
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